Factored sparse inverse covariance matrices

نویسنده

  • Jeff A. Bilmes
چکیده

Most HMM-based speech recognition systems use Gaussian mixtures as observation probability density functions. An important goal in all such systems is to improve parsimony. One method is to adjust the type of covariance matrices used. In this work, factored sparse inverse covariance matrices are introduced. Based on U DU factorization, the inverse covariance matrix can be represented using linear regressive coefficients which 1) correspond to sparse patterns in the inverse covariance matrix (and therefore represent conditional independence properties of the Gaussian), and 2), result in a method of partial tying of the covariance matrices without requiring non-linear EM update equations. Results show that the performance of full-covariance Gaussians can be matched by factored sparse inverse covariance Gaussians having significantly fewer parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

JPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

Discriminatively trained sparse inverse covariance matrices for low resource acoustic modeling

We propose a method to discriminatively train acoustic models with sparse inverse covariance (precision) matrices in order to improve the model robustness when training data is insufficient. Acoustic models with sparse inverse covariance matrices were previously proposed to address the problem of over-fitting when training data is inadequate. Since many of the entries of the inverse covariance ...

متن کامل

Minimax Estimation of Bandable Precision Matrices

The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, wh...

متن کامل

0 Sparse Inverse Covariance Estimation

Recently, there has been focus on penalized loglikelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting “norm” is the non-convex l0 penalty but its lack ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000